2,615 research outputs found

    Simultaneous observation of small- and large-energy-transfer electron-electron scattering in three dimensional indium oxide thick films

    Full text link
    In three dimensional (3D) disordered metals, the electron-phonon (\emph{e}-ph) scattering is the sole significant inelastic process. Thus the theoretical predication concerning the electron-electron (\emph{e}-\emph{e}) scattering rate 1/τφ1/\tau_\varphi as a function of temperature TT in 3D disordered metal has not been fully tested thus far, though it was proposed 40 years ago [A. Schmid, Z. Phys. \textbf{271}, 251 (1974)]. We report here the simultaneous observation of small- and large-energy-transfer \emph{e}-\emph{e} scattering in 3D indium oxide thick films. In temperature region of T100T\gtrsim100\,K, the temperature dependence of resistivities curves of the films obey Bloch-Gr\"{u}neisen law, indicating the films possess degenerate semiconductor characteristics in electrical transport property. In the low temperature regime, 1/τφ1/\tau_\varphi as a function of TT for each film can not be ascribed to \emph{e}-ph scattering. To quantitatively describe the temperature behavior of 1/τφ1/\tau_\varphi, both the 3D small- and large-energy-transfer \emph{e}-\emph{e} scattering processes should be considered (The small- and large-energy-transfer \emph{e}-\emph{e} scattering rates are proportional to T3/2T^{3/2} and T2T^2, respectively). In addition, the experimental prefactors of T3/2T^{3/2} and T2T^{2} are proportional to kF5/23/2k_F^{-5/2}\ell^{-3/2} and EF1E_F^{-1} (kFk_F is the Fermi wave number, \ell is the electron elastic mean free path, and EFE_F is the Fermi energy), respectively, which are completely consistent with the theoretical predications. Our experimental results fully demonstrate the validity of theoretical predications concerning both small- and large-energy-transfer \emph{e}-\emph{e} scattering rates.Comment: 5 pages and 4 figure

    Genetic incorporation of D-Lysine into diketoreductase in Escherichia coli cells

    Get PDF
    D-Lysine has been genetically introduced into diketoreductase in E. coli cells by utilization of an orthogonal Ph tRNA /Lysyl-tRNA synthetase pair. This is the first report on the genetic incoporation of D-amino acids into proteins, which may be generally applicable to a wide variety of applications
    corecore